skip to main content


Search for: All records

Creators/Authors contains: "Oh, Hyunjoo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mark Weiser predicted in 1991 that computing would lead to individuals interacting with countless computing devices, seamlessly integrating them into their daily lives until they disappear into the background. However, achieving this seamless integration while addressing the associated environmental concerns is challenging. Trillions of smart devices with varied capabilities and form-factor are needed to build a networked environment of this magnitude. Yet, conventional computing paradigms require plastic housings, PCB boards, and rare-earth minerals, coupled with hazardous waste, and challenging reclamation and recycling, leading to significant e-waste. The current linear lifecycle design of electronic devices does not allow circulation among different life stages, neglecting features like recyclability and repairability during the design process. In this position paper, we present the concept of computational materials designed for transiency as a substitute for current devices. We envision that not all devices must be designed with performance, robustness, or even longevity as the sole goal. We detail computer systems challenges to the circular economy of computational materials and provide strategies and sketches of tools to assess a device's entire lifetime environmental impact. 
    more » « less
    Free, publicly-accessible full text available July 9, 2024
  2. Electronics prototyping platforms such as Arduino enable a wide variety of creators with and without an engineering background to rapidly and inexpensively create interactive prototypes. By opening up the process of prototyping to more creators, and by making it cheaper and quicker, prototyping platforms and toolkits have undoubtedly shaped the HCI community. With this workshop, we aim to understand how recent trends in technology, from reprogrammable digital and analog arrays to printed electronics, and from metamaterials to neurally-inspired processors, might be leveraged in future prototyping platforms and toolkits. Our goal is to go beyond the well-established paradigm of mainstream microcontroller boards, leveraging the more diverse set of technologies that already exist but to date have remained relatively niche. What is the future of electronics prototyping toolkits? How will these tools fit in the current ecosystem? What are the new opportunities for research and commercialization? 
    more » « less
  3. We have witnessed explosive growth in computing devices at all scales, in particular with small wireless devices that can permeate most of our physical world. The IoT industry is helping to fuel this insatiable desire for more and more data. We have to balance this growth with an understanding of its environmental impact. Indeed, the ENSsys community must take leadership in putting sustainability up front as a primary design principle for the future of IoT and related areas, expanding the research mandate beyond the intricacies of the computing systems in isolation to encompass and integrate the materials, new applications, and circular lifecycle of electronics in the IoT. Our call to action is seeded with a circularity-focused computing agenda that demands a cross-stack research program for energy-harvesting computational things. 
    more » « less
  4. This paper draws on critical perspectives and a specific design case of learning in making with physical computing cards to argue that unblackboxing as a design goal must go beyond technical or computational aspects of computational making. Taking a justice-oriented stance on computing education, we review earlier perspectives on unblackboxing in computing education and their limitations to support equitable learning for young people. As a provocation and practical guide for designers and educators, we propose the idea of deblackboxing, and outline a set of prompts, organized into four areas, or layers – disciplinary knowledge and practice, externalities, histories, and possible futures. Tools and materials designed through the lens of deblackboxing could provide new possibilities for interaction, production, and pedagogy in makerspaces. We demonstrate how these might be applied in the design of a set of creative physical computing materials used with youth in a weeklong summer workshop. 
    more » « less
  5. To make computer science (CS) more equitable, many educational efforts are shifting foci from access and content understanding to include identification, agency, and social change. As part of these efforts, we look at how learners perceive themselves in relation to what they believe CS is and what it means to participate in CS. Informed by three design lenses, unblackboxing, culturally responsive computing, and creative production, we designed a physical computing kit and activities. Drawing from qualitative analysis of interviews, artifacts, and observation of six young people in a weeklong summer workshop, we report on the experiences of two young Black women designers. We found that using these materials young people were able to: leverage personal goals and prior experiences in computing work; feel as if they were figuring out computing systems; and recognize computational technologies as created by people for particular purposes. We observed that while the mix of materials and activities created some frustration for participants, it also prompted processes of community building and inquiry. We discuss implications for design of computational tools in equity-centered CS education and pose seamfulness as an emergent heuristic when designing for learning that engages young people with the social, not just material, systems of computing. 
    more » « less
  6. Creative iterative development over the past several years has generated an extensive set of computational tools, learning resources, and materials in the realm of paper mechatronics - an educational craft and design approach that weaves computational and mechanical elements into established traditions of children's construction with paper. Here, we both reflect upon our past and recent work of paper mechatronics, then look to the near- to medium-term future to speculate upon both the emerging trends in technology design and expanding learning potential of this medium for children along material, spatial, and temporal dimensions. We summarize lessons learned through various children's workshops with our materials; and we use these lessons as a foundation upon which to create a wide variety of novel tools and activities in educational papercrafting. We speculate upon the frontiers of this work based on current convergences and shifts in tangible creative computational media. 
    more » « less